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The  solar  cells  (SCs)  are  the  most  typical  devices  used  to
convert the solar energy into electricity to help relieving the en-
ergy shortage crisis. In the photovoltaic (PV) communities, im-
proving the power-conversion efficiency (PCE) of  SC keeps to
be  a  long-term  objective.  In  the  past  decades,  enormous  ef-
forts have been paid on exploring various new structural scen-
arios  or  PV  mechanisms  (e.g.,  near-field  thermophotovoltaic
and  hot-carrier  SCs)  in  order  to  approach  or  even  break  the
Shockley-Queisser (SQ) efficiency limits of various SCs[1]. How-
ever,  besides  the  perovskite  SCs[2],  the  rate  of  efficiency  im-
provement is extremely slow in the past decade, especially for
the  traditional  semiconductor-based  SCs.  In  practice,  for  a
high-performance  SC,  a  comprehensive  optimization  should
simultaneously consider increasing the optical absorption, im-
proving the electrical collection efficiency, and controlling the
thermodynamic  effect[3, 4].  The  challenge  lies  in  that  man-
aging the SC operation is accompanied by the coupled photo-
electric,  photo-thermal  and  thermoelectric  processes,  which
have  to  be  managed  from  the  perspectives  of  operation  ba-
sics, material systems, structural designs and fabrication feasibil-

ities.  Such  a  multi-domain  and  multi-physical  behavior  can
hardly be estimated conveniently in experiments (even in theor-
etical calculations or simulations), so that the performance im-
provement by balancing the optical, electrical, and thermal ef-
fects is very challenging. For instance, the transportation of pho-
tocurrent is not just regulated by the temperature, but also ac-
companied by the emission of photons and the generation of
heat that affect the temperature of SC. Therefore, in order to fur-
ther enhance the SC efficiency, it is necessary to thoroughly in-
vestigate the coupled multiphysical  effect  from the complete
opto-electro-thermal (OET) domains.

The recent research proposes the full-coupled OET simula-
tion technology of SC[5], which reveals the fundamental physic-
al mechanisms in SCs by addressing the coupled optical, elec-
trical  and thermal effects simultaneously[5, 6].  The OET simula-
tion technology interprets the energy conversion and dissipa-
tion paths inside the SC system from both macroscopic and mi-
crocosmic perspectives, as plotted in the Fig. 1. For the photo-
voltaic  system,  the  energy  losses  and  conversion  processes
can  attribute  to  three  channels  (i.e.,  optical,  electrical  and
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Fig. 1. (Color online) (a) Schematic diagrams of energy flow distribution in SCs under sunlight illumination. (b) The carrier thermodynamic phys-
ics in SCs. (c) The schematic diagrams of optical, electrical and thermal optimization strategy applied in the SC. (d) The possible applications of
the OET simulation technology[5].
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thermal ways), as shown in Fig. 1(a). Based on the OET model
of SC, firstly, the energy loss flows by optical effects can be es-
timated by examining the reflection, absorption, and transmis-
sion characteristics of the SC. Then, with quantifying the carri-
er electrodynamic behaviors (i.e., generation, transportation, re-
combination,  and  collection  processes),  the  electrical  losses
can be estimated. Finally, addressing the carrier thermodynam-
ic  behaviors  (e.g.,  thermalization,  recombination  heat,  Joule
and Peltier  heat)  in  the SC,  the thermal  effect  and the opera-
tion temperature of SC can be predicted, as shown in Fig. 1(b).
All these energy losses via various channels can be readily ob-
tained under the OET simulation technology.

With quantitatively analyzing the energy losses in SCs by
the OET simulation, the optimization can be achieved very con-
veniently, as shown in the Fig. 1(c). From the optical perspect-
ive, introducing an anti-reflection layer or back-reflection mir-
ror is the basic optimization strategy. Besides, with the develop-
ment  of  the  photonic  crystal,  the  optical  absorption  can  be
greatly  enhanced  by  designing  various  light-trapping  struc-
tures (e.g., gratings or pyramids)[7]. From the electrical perspect-
ive, the photogenerated electron-hole pairs suffer from the seri-
ous recombinations[8]. Thus, by tailoring the doping concentra-
tion and engineering the energy band alignment, the electric-
al  performance of SC can be effectively managed[9].  From the
thermodynamic perspective,  the temperature dependence of
the performance of SC can be examined so that thermal con-
trolling  strategies  can  be  introduced,  e.g.,  the  radiative
cooler[10].

In  summary,  the  coupled  OET  simulation  technology
provides a feasible way for comprehensively exploring the fun-
damental physics and light-matter interactions in photovolta-
ic devices so that high-performance SCs can be achieved. Be-
sides, more extensive optoelectronic devices (e.g., photodetect-

ors, light-emitting diodes) as being exemplified in Fig. 1(d) can
be studied by extending the current OET model with introdu-
cing the corresponding physics[11], enabling a device-level and
accurate design of the various optoelectronic devices.
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