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The solar cells (SCs) are the most typical devices used to
convert the solar energy into electricity to help relieving the en-
ergy shortage crisis. In the photovoltaic (PV) communities, im-
proving the power-conversion efficiency (PCE) of SC keeps to
be a long-term objective. In the past decades, enormous ef-
forts have been paid on exploring various new structural scen-
arios or PV mechanisms (e.g., near-field thermophotovoltaic
and hot-carrier SCs) in order to approach or even break the
Shockley-Queisser (SQ) efficiency limits of various SCs!"l. How-
ever, besides the perovskite SCsl2, the rate of efficiency im-
provement is extremely slow in the past decade, especially for
the traditional semiconductor-based SCs. In practice, for a
high-performance SC, a comprehensive optimization should
simultaneously consider increasing the optical absorption, im-
proving the electrical collection efficiency, and controlling the
thermodynamic effect’® 4. The challenge lies in that man-
aging the SC operation is accompanied by the coupled photo-
electric, photo-thermal and thermoelectric processes, which
have to be managed from the perspectives of operation ba-
sics, material systems, structural designs and fabrication feasibil-
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ities. Such a multi-domain and multi-physical behavior can
hardly be estimated conveniently in experiments (evenin theor-
etical calculations or simulations), so that the performance im-
provement by balancing the optical, electrical, and thermal ef-
fectsis very challenging. Forinstance, the transportation of pho-
tocurrent is not just regulated by the temperature, but also ac-
companied by the emission of photons and the generation of
heat that affect the temperature of SC. Therefore, in order to fur-
ther enhance the SC efficiency, it is necessary to thoroughly in-
vestigate the coupled multiphysical effect from the complete
opto-electro-thermal (OET) domains.

The recent research proposes the full-coupled OET simula-
tion technology of SCB], which reveals the fundamental physic-
al mechanisms in SCs by addressing the coupled optical, elec-
trical and thermal effects simultaneously® 6. The OET simula-
tion technology interprets the energy conversion and dissipa-
tion paths inside the SC system from both macroscopic and mi-
crocosmic perspectives, as plotted in the Fig. 1. For the photo-
voltaic system, the energy losses and conversion processes
can attribute to three channels (i.e., optical, electrical and
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Fig. 1. (Color online) (a) Schematic diagrams of energy flow distribution in SCs under sunlight illumination. (b) The carrier thermodynamic phys-
ics in SCs. (c) The schematic diagrams of optical, electrical and thermal optimization strategy applied in the SC. (d) The possible applications of

the OET simulation technology®.
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thermal ways), as shown in Fig. 1(a). Based on the OET model
of SC, firstly, the energy loss flows by optical effects can be es-
timated by examining the reflection, absorption, and transmis-
sion characteristics of the SC. Then, with quantifying the carri-
er electrodynamic behaviors (i.e., generation, transportation, re-
combination, and collection processes), the electrical losses
can be estimated. Finally, addressing the carrier thermodynam-
ic behaviors (e.g., thermalization, recombination heat, Joule
and Peltier heat) in the SC, the thermal effect and the opera-
tion temperature of SC can be predicted, as shown in Fig. 1(b).
All these energy losses via various channels can be readily ob-
tained under the OET simulation technology.

With quantitatively analyzing the energy losses in SCs by
the OET simulation, the optimization can be achieved very con-
veniently, as shown in the Fig. 1(c). From the optical perspect-
ive, introducing an anti-reflection layer or back-reflection mir-
ror is the basic optimization strategy. Besides, with the develop-
ment of the photonic crystal, the optical absorption can be
greatly enhanced by designing various light-trapping struc-
tures (e.g., gratings or pyramids)[l. From the electrical perspect-
ive, the photogenerated electron-hole pairs suffer from the seri-
ous recombinations!8l, Thus, by tailoring the doping concentra-
tion and engineering the energy band alignment, the electric-
al performance of SC can be effectively managed®. From the
thermodynamic perspective, the temperature dependence of
the performance of SC can be examined so that thermal con-
trolling strategies can be introduced, e.g., the radiative
coolerl'0,

In summary, the coupled OET simulation technology
provides a feasible way for comprehensively exploring the fun-
damental physics and light-matter interactions in photovolta-
ic devices so that high-performance SCs can be achieved. Be-
sides, more extensive optoelectronic devices (e.g., photodetect-

ors, light-emitting diodes) as being exemplified in Fig. 1(d) can
be studied by extending the current OET model with introdu-
cing the corresponding physics!'", enabling a device-level and
accurate design of the various optoelectronic devices.
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